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Abstract: This paper deals with a model-based Automatic GENeration of Di-
Agnosis trees method (AGENDA) using the AO* algorithm. The inputs of this
algorithm are the anticipated faults which may occur on the system to diagnose
with their respective occurrence probability, the anticipated tests that can be
performed and the cross-table which assigns to each (fault/test) pair the set of
modalities which are expected as outcome of the test when the fault occurs. The
main drawback of AGENDA is the required high computation time to obtain an
optimal diagnosis tree for large complex systems. This paper presents two methods
which allow us to generate the diagnosis trees in a more efficient way while reducing
the optimality loss.

Keywords: Test sequencing problem, model based, AO*, near optimal diagnosis
tree.

1. INTRODUCTION

In the automotive domain, the use of electronic
systems to control several functions is widely
spread. These functions span diverse automotive
areas such as fuel injection, ABS, ... . These elec-
tronic systems are composed of a voltage supply,
sensors and actuators linked to electronic control
units (ECUs for short) by a wire harness.

The main task of the ECU is to elaborate and
send control signals to the actuators, taking into
account the signals received by the sensors. More-
over, an ECU is equipped with a self-diagnosis
function that reliably detects the failing electric
circuits. However, the ECU is not able to localize
precisely the faulty components within the func-
tional circuit. In order to accurately localize the
faulty components, diagnosis tree are built.

Currently, diagnosis trees are built by human ex-
perts resulting by frequently errors due to system
complexity. Hence, it is imperative to reduce hu-
man intervention in the generation of diagnosis
trees. That’s why AGENDA (Faure, 2001), an off-
line automatic diagnosis tree generation method
was developed. AGENDA is based on an AO*
algorithm having as input a ”cross-table” (fault
signature matrix) and using some heuristic func-
tion.

This task of finding an optimal diagnosis tree
is well-known to be NP-complete (Moret, 1982).
So, to avoid high computation time associated
to the generation of an optimal diagnosis tree,
methods which allow to obtain near-optimal trees
are proposed in the litterature. Different reduced
test subsets are used by Faure (Faure, 2001). The
notion of ε-admissibility which allows to control



the suboptimality and a Multistep information
Heuristic approach are presented in (Raghavan
et al., 1999). Rollout strategies are described in
(Tu and Pattipati, 2002) for dealing with large
complex system. Some other variants like MAO*
and WAO* are proposed in (Chakrabarti et al.,
1989) and (Chakrabarti et al., 1988), respectively.
This paper proposes two new methods in order to
reduce this too high computation time by building
a near-optimal diagnosis tree.

Section 2 sets the test sequencing problem. Sec-
tion 3 details the AO* algorithm. Section 4 and 5
presents the two proposed new methods. Section
6 gives some performance evaluation.

2. TEST SEQUENCING PROBLEM

In this section, we define the main features of the
test sequencing problem (Pattipati and Dontam-
setty, 1992) : given a faults set, a tests set and a
”crosstable”, designing an optimal diagnosis tree
by minimizing equation 2.

2.1 Fault set

Let E be the set of the nE elementary components
ek with k ∈ {1, ..., nE} which constitute the
system to diagnose. Let nek

be the number of
abnormal behavior ABl(ek) with l ∈ {1, ..., nek

}
of the elementary component ek and ¬AB(ek) its
normal behavior.

A fault is a nE vector which associates to each of
the nE elementary component ek one of its nek

abnormal behavior or its normal one. For such a
system,

∏nE

k=1(nek
+ 1) faults may occur.

For the following, let F be the fault set composed
by the nF faults fi with i ∈ {1, ..., nF } and pi,
their respective a priori occurrence probability.

2.2 Test set

A test is defined as a physical variable measure-
ment or as an observable manifestation.

A prediction process allows to find all the possible
outcomes of each test w.r.t. to every fault of F .
All this outcomes define the domain value of the
test. For each test, a set of modalities is computed
as a partition of the test domain value.

For the following, let S be the test set com-
posed by nS tests sj with j ∈ {1, ..., nS}, nj

M

their respective number of modalities mj
k with

k ∈ {1, ..., nj
M} and cj , their respective cost rep-

resenting the measurement tool configuration cost
and the measurement points accessibility cost.

We gives below some definitions which are used in
the next sections.

Definition 1. (Binary test). A test is said to be
binary if it has a number of modalities exactly
equal to two.

Definition 2. (Exclusive test). A test is said to
be exclusive if, for any fault, one and only one
modality is expected for the concerned test.

Definition 3. (Multi-modal test). A test is said to
be multi-modal if it has a number of modalities
greater or equal than two.

Definition 4. (Entire test set). A entire test set is
the set of all physically available tests on a system.

Definition 5. (Discriminating test set). A test set
is said to be discriminating for a fault set F if it
is able to discriminate all the faults of F .

Definition 6. (Unit test cost assumption). Under unit
test cost assumption, the test cost is equal to 1 for
any considered test.

2.3 Cross-table

Given F and S, the corresponding ”cross-table”
C has nF rows and nS columns. Each of its
cells C(i, j) contains the set of ni,j

M modalities
among the nj

M possible ones which are expected
as outcome of the test sj in occurrence of the fault
fi.

Moreover, the conditional probabilities P (sj =
mj

k|fi) of ”having mj
k as outcome of the test sj

knowing that the fault fi has occurred” for any k ∈
{1, ..., nj

M} are also available in the C(i, j) cell.
These conditional probabilities are normalized as
shown on equation (1). For any modality mj

k

which does not belong to the C(i, j) modalities
set then P (sj = mj

k|fi) = 0.

nj
M∑

k=1

P (sj = mj
k|fi) = 1 (1)

For the following, C represents the ”cross-table”
corresponding to the F and S sets and C(i, j), the
cell of C relative to the fault fi and the test sj .

3. TEST SEQUENCING PROBLEM
RESOLUTION

3.1 Diagnosis tree

A diagnosis tree may be viewed as an AND/OR
tree (Pattipati and Alexandridis, 1990). An OR



node correspond to a faults subset and an AND
node to a test. The root node is an OR node
composed of the faults sets F . A leaf node is an
OR node and represents one possible fault. A not
leaf OR node has one and only one AND node
child corresponding to the test to apply whereas
an AND node has several OR node children cor-
responding to the modalities of the given test.

For the following, let T be the diagnosis tree which
discriminates the fault set F by using the test
set S according to the cross-table C. Let nL be
the number of leaves {l1, ..., lnL

} and P (li) the
occurrence probability of each leaf li such that∑nL

i=1 P (li) = 1. Let dij be a boolean variable
equal to 1 if the test sj belongs to the path from
the root to the leaf li and 0 otherwise.

The objective function K of a diagnosis tree T ,
defined by equation (2), is considered to evaluate
the different possible diagnosis trees of a same
system.

K(T ) =
nL∑
i=1

P (li) ×



nS∑
j=1

dij × cj


 (2)

Under unit test cost assumption, the objective
function K(T ) is equivalent to the mean depth
of the tree T .

3.2 AO* algorithm

Due to length restriction, the used heuristic are
not developed here. We use an admissible heuristic
which, combined with the AO* algorithm, guar-
anties to obtain an optimal diagnosis tree (Bagchi
and Mahanti, 1983). For details about the used
heuristics, see (Pattipati and Alexandridis, 1990)
and (Yeung, 1994).

Initialization At the beginning of the AO* algo-
rithm, the implicit AND/OR search graph is com-
posed of only its root R, an OR node composed
of entire faults set F .
The current optimal diagnosis tree T ∗ and L∗, the
set of its expandable leaves are also initialized to
{R}. Moreover, since R is a leaf, the cost-to-go
value of R, F (R) is initialized to the Heuristic
Evaluation Function (HEF) value h(R) of R.

Iterative treatment At each step of the AO* algo-
rithm, the leaf N of the set L∗ that has the highest
HEF value h(N) is removed from the set L∗.
The nA AND nodes NA

j children of the node N ,
are created. Each node NA

j refers to one test sj .
The nj

M OR nodes NO
j,k, children of each node

NA
j , are also created. Each node NO

j,k refers to
the fault subset resulting from the fault subset
corresponding to the node N knowing that the
kth outcome has been observed for the test sj .

For each created node NO
j,k, F (NO

j,k) is computed
as h(NO

j,k). Then, for each created node NA
j ,

F (NA
j ) is computed as shown in equation 3.

F (NA
j ) = cj +

nj
M∑

k=1

F (NO
j,k) (3)

Let PN (fi) denote the occurrence probability of
the fault fi at the node N .
For each node NA

j , the occurrence probability of
each fault fi that appears in the resulting subset
corresponding to any created OR node NO

j,k, called
PNO

j,k
(fi), is computed according the Bayes’ rule

as shown in equation 4. The first step of this
computation corresponds to the evaluation of the
probability that the outcome mj

k is observed for
test sj at the node NA

j , called PNA
j

(sj = mj
k).




PNA
j

(sj = mj
k) =

nF∑
i=1

P (sj = mj
k|fi) × PN (fi)

PNO
j,k

(fi) =
P (sj = mj

k|fi) × PN (fi)

PNA
j

(sj = mj
k)

(4)

At last, a recursive treatment is performed on the
successive nodes from the node N to the root R,
both included. This treatment consists in updat-
ing successively the cost-to-go values F of these
nodes and the mark of the selected AND nodes
which constitute the current optimal diagnosis
tree T ∗. Let Nc be the current node on which the
recursive treatment has to be performed.

• Nc is an OR node
Let nc be the number of children of Nc,
called N c

j . At most one of these nc children
is marked.
The mark on the selected AND node, child of
Nc, is removed. For the node Nc, the cost-to-
go value F (Nc) is then computed as shown in
equation 5 and the jth AND node for which
this minimum is reached is marked.

F (Nc) =
nc

min
j=1

F (N c
j ) (5)

• Nc is an AND node
Let nc be the number of children of Nc, called
N c

k . If Nc corresponds to the test sj , then N c
k

refers to the nj
M possible outcomes for sj and

nc = nj
M .

The probability to reach the node N c
k from

the node Nc, called PNc
(N c

k), is equivalent
to the probability to observe the outcome
mj

k for the test sj at the node Nc, called
PNc

(sj = mj
k) and computed as already

shown in equation 4.
For the node Nc, the cost-to-go value F (Nc)
is then computed as shown in equation 6.



F (Nc) = cj +
nj

M∑
k=1

P (N c
k) × F (N c

k) (6)

The set L∗ is updated according to the current
marked optimal diagnosis tree T ∗.

Stop condition The AO* algorithm stops when
the set L∗ is empty. Then, the current marked
optimal diagnosis tree T ∗ is the definitive optimal
diagnosis tree and J(R) = F (R).

4. STATIC TEST SET REDUCTION
METHOD

Faure (Faure, 2001) proposes to use two discrim-
inating tests subsets in order to generate near-
optimal diagnosis tree. Their definitions are given
below.

Definition 7. (First Discriminating test subset). Let
us consider a set S of nS tests sj ordered by
increasing cost. A First Discriminating test subset
SFirst is defined by adding to SFirst the tests of S
one by one, according to the previous cost order,
until a discriminating test subset is obtained.

Definition 8. (Minimal Discriminating test subset).
A discriminating test subset S

′
is said to be min-

imal if and only if, for any of its n
′
S tests s

′
j with

j ∈ {1, ..., n
′
S}, S

′−{s′
j} is not able to discriminate

the fault set.

We add a third definition concerning the discrim-
inating tests subset of a given optimal diagnosis
tree.

Definition 9. (Optimal Discriminating test subset).
An optimal discriminating test subset S∗ is a
discriminating test subset composed of the tests
associated to a given optimal diagnosis tree for
the considered fault set F .
Moreover, it is important to underline that, for
a same initial test set, it exists as many optimal
discriminating test subsets as optimal diagnosis
trees.

Remark 10. An optimal discriminating test sub-
set is not necessarily a minimal discriminating test
subset. Figure 1 shows an example.

Remark 11. An optimal discriminating test sub-
set necessarily includes at least one minimal dis-
criminating test subset.

Faure (Faure, 2001) uses the two test subsets
defined in 7 and 8, as input of the test sequencing
problem to build a near-optimal diagnosis tree.

F1,F2,F3

T1

F2 F3

F1 F2,F3

T2

F1,F2,F3

T1

F1 F2 F3

K({T1}) = 10

K({T2,T1}) = 5

Cost(T1) = 10
Cost(T2) = 1

Proba(F1) = 0,6
Proba(F2) = 0,2
Proba(F3) = 0,2

Fig. 1. Minimal and optimal test subset

The entire test set are replaced by SMin or SFirst

; we call these two near-optimal methods AO∗
Min

and AO∗
First, respectively.

5. TEST SET REDUCTION METHOD

In our application domain, the cardinality of the
tests set could be more than one magnitude or-
der higher than the cardinality of the faults set.
In this case, as the AO* algorithm evaluates all
the remaining (i.e. not yet used) tests for each
OR node at each iteration, the step of heuristic
computation is very expensive in terms of compu-
tation time.

Indeed, given the nF faults of F , the diagnosis
tree needs, in the worst case of binary tests dis-
criminating just one fault from all the others, nF

tests. So, at last iteration of the AO* algorithm,
nS − (nF − 1) tests would be evaluate by the
heuristic function.

So we proposed to select a subset of the remaining
tests set before the evaluation of one OR node
according to a given criteria. We call this method
AO∗

Dyn. It is important to notice that its criteria is
precomputed one time for all the other, otherwise
it is obvious that replacing an heuristic evaluation
by another one has no effect.

A similar method called Limited Search AO*
restricted to binary tests is proposed in (Raghavan
et al., 1999). A user specified parameter is used
to limit the number of considered tests after a
heuristic evaluation based on information gain.

5.1 AO∗
Dyn Method

The method AO∗
Dyn modifies the iterative step of

the AO* algorithm. Indeed, instead of considering
all the available tests for the chosen OR node, only
a subset is selected. Several criteria of selection
may be used.



A test sj is characterized by 3 main features : its
constant cost cj , its number of modalities nj

M and
its efficiency effj = Log(nj

M )/cj (Yeung, 1994).

These main features allow to order a priori the
tests. The most interesting is the third one be-
cause it combines the first two. When tests are
ordered, the number nmax of tests to be chosen is
a constant defined by the user.

The method is based on selecting the first nmax

ordered tests and developing the corresponding
AND nodes. We have simply reduce the number
of tests to be estimated by the HEF without
evaluating any HEF, but by using the precompiled
criteria.

Note that for each OR node created from the pre-
vious AND nodes, a new reduction is performed
from the entire test set. So the reduction at some
step has no effect on the next iteration of the AO*
algorithm in terms of optimality.

6. ITERATIVE GENERATION OF THE
DIAGNOSIS TREE METHOD

The method proposed in this section, is an Any-
time one : indeed, it gives the best diagnosis tree
w.r.t. the available time.

As described in section ??, the tests subsets SMin

and SFirst, defined by definitions ?? and 7, allow
to obtain efficient near-optimal diagnosis tree with
acceptable computation time. This diagnosis tree
may be used as a first reference that can evolve to
a better one. So, we propose then to make the used
tests subset evolve in order to have a better near-
optimal solution. To do this, we describe next the
evolution of the test subset and the impact on the
AO* algorithm.

We call AnyMin the approach when the test set
is initialized with SMin, and AnyFirst when it is
initialized with SFirst.

6.1 Test set evolution

The tests subset used to generate the diagnosis
tree is initialized with one of the both tests subset
: SMin or SFirst.

Let us consider a discriminating test subset
SCurrent which is used to obtain a global near-
optimal solution. As written above, the tests sub-
set SCurrent may evolve, it is to say some tests
must be added to SCurrent in order to obtain a
better global near-optimal diagnosis tree.

To choose the next test to be added, we use the
same precomputed criterion as for the AO∗Dyn

approach : the test efficiency.

Let us consider SPossible = {sp0, ..., spnp
}, the

set of np tests that can potentially be added to
SCurrent : SPossible = S − SCurrent. Without
loss of generalities, we assume that the tests are
ordered by increasing efficiency in SPossible. So,
the test to add is sp0.

6.2 AO* algorithm impact

Let us consider K0, the reference cost which is
initialized with the cost of the diagnosis tree
obtained from the initial tests subset (SMin or
SFirst), and KCurrent, the cost of the current
creating diagnosis tree.

This approach doesn’t modify the core of the AO*
algorithm, but only its stop condition. Indeed,
when the current cost KCurrent becomes greater
than the reference cost K0, it is not necessary to
follow the search in the AND/OR tree because
the final corresponding cost will be greater than
the current one KCurrent, so than K0 and, finally
the associated diagnosis tree will not be a better
near-optimal solution.

The update of the reference cost has to be done
when the final cost KCurrent of a diagnosis tree is
lower than the reference cost K0 :

If KCurrent ≤ K0, then K0 = KCurrent.
If KCurrent ≥ K0, then K0 keeps its value.

6.3 Iteration of Anytime method

We define an iteration as the addition of a test to
the test subset SCurrent and the performance of
the AO* algorithm.

The main drawback of this approach is the nec-
essary increasing of the cardinality of the tests
subset SCurrent which increases the AO* algo-
rithm computation time. But, in the case of too
bad solution, the modified stop condition allows
to stop the AO* algorithm prematurely without
high loss of time, and to go to the next iteration.

To avoid high computation time, the AO* algo-
rithm execution time can be preferred to the com-
plete exploration of the tests subset by bounding
the cardinality of SCurrent with an user parameter
nMax. When this bound is reached, SCurrent is
reduced to the last found discriminating optimal
test subset S∗.

The main advantage is the computation time
control. Indeed, this time may be bounded. So,
given a duration, the best near-optimal diagnosis
tree is found.



7. PERFORMANCE EVALUATION

The performance of the two proposed methods
AO*Dyn and AnyMin (and its variant AnyFirst)
is evaluated against the three other methods
AO* with entire test set (optimal), AO∗

Min and
AO∗

First, on 3 different systems Σi with i ∈
{1, 2, 3} ordered by increasing complexity order.
These systems are realistic automotive models.

The figure 2 shows the computation time for each
system and each method, between brackets, the
gap in percent w.r.t. the optimal cost and the
number of iterations to obtain the optimal cost for
the Anytime algorithms, between square brackets.
The gap w.r.t. the optimal cost is not given for the
Anytime algorithms as it is already zero.

Σ1 Σ2 Σ3

Optimal < 1′′(-) 1′32′′(-) 3′55′′(-)
AO∗

Min < 1′′(9%) < 1′′(61%) < 1′′(35%)
AO∗

First < 1′′(0%) 1′05′′(0%) 7′′(0%)
AO∗

Dyn < 1′′(0%) < 1′′(1%) 3′′(1%)
AnyMin 2′′ [4] 47′′ [11] 8′′ [4]
AnyFirst < 1′′ [1] 1′05′′ [1] 7′′ [1]

Fig. 2. Evaluation for 3 different systems

Figure 3 shows the number of iteration versus the
gap in percent w.r.t the optimal cost for 3 systems
{Σ1,Σ2,Σ3} when AnyMin method is used. Σ2

converges slowly to the optimal cost because a
particular test which discriminates a particular
fault has to be included in the test sequence. In
general, at least 10 iterations are needed to be at
less than 10% from the optimal cost.

Fig. 3. Gap w.r.t. the optimal versus iterations
number for the 3 systems

The AO∗
First and the Anytime methods are the

two best ones for our application domain. The
AnyFirst is the preferred method because its
first iteration is equivalent to apply the AO∗

First

method and has the same computational time.
But the next iterations can give a better result
if more time is available for the computation.

8. CONCLUSION

This paper explains how to generate automat-
ically near-optimal diagnosis trees and how to
control the computation time.

The processing time is proportional to the number
nS of tests in the initial test set S. This is why
we propose to reduce dynamically, i.e. during the
AO* algorithm, S in a subset S

′
such that S

′ ⊆ S
in order to decrease the computation time. The
obtained diagnosis tree is then near-optimal.
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